Paste and Void Content

Paste Content

Paving Method	Target	Property	
Slip Formed	≤ 25.0	Shrinkage Resistance	
Fixed Formed	≤ 28.0		28.0%

Paste and Void Content

Design Parameter	Target	Property	ı.	
Paste Content (with Air) to	< 1.25	Decreased Workability		
Void Content of the Mix	1.25 – 1.75	Enhanced Workability		
Design (PC _{AIR} /VC _{MIX}) Ratio	> 1.75	Increased Segregation		2.01

[1] Verification test results allowed for this value to be exceeded. However, it is best practice to design for the 1.25 - 1.75 target. Next time! Target should be on the higher end of that range for fixed formed...lower end for slip formed.

Aggregate and Fresh Concrete

Test Method	Quality Characteristic	Min. Limit	Max. Limit
AASHTO T 19	Composite Aggregate Void Content	Informational	
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregates	Tarantula Curve	
AASHTO T 121	Unit Weight (Ib / ft ³)	Target -3.0	Target +3.0
AASHTO T 119	Slump (in.)	Target -1.5	Target +1.5
AASHTO T 119	Segregation Resistance ^[1]	Visual	
AASHTO T 152	Air Content (%)	Target -1.5	Target +1.5
AASHTO T 309	Concrete Temperature (°F)	50	90
AASHTO T 395	395 System Air Metric (SAM) Number (psi)		0.20

[1] Testing for segregation resistance is performed while the concrete is being discharged and during AASHTO T 119 Standard Method of Test for Slump of Hydraulic Cement Concrete.

Hardened Concrete

Test Method	Quality Characteristic		Min. Limit	Max. Limit	
AASHTO T 22	Compressive Strength (psi)		5000	-	
AASHTO T 97	Flexural Strength (psi)		650	-	
AASHTO T 402	Chloride Ion Penetration Resistance (kΩ-cm)		10.4	_	
AASHTO T 380	ASR Resistance Expansion (%)	100% Cement	—	0.030	
		SCM Mitigation	_	0.019	
AASHTO T 336	Coefficient of Thermal E	Target -0.5	Target +0.5		
AASHTO T 160	Unrestrained Volume C	—	420		
AASHTO T 161	Deterioration Cracking Durability Factor		90	-	
	Resistance	Mass Loss (%)	—	6.0	
AASHTO T 365	De-icing Resistance: C	_	0.14		
	Content (g CA _{OXY} / g Pa				
AASHTO R 101	Degree of Saturation fo	_	0.85		

Degree of Saturation

Sample ID	DOS-1	DOS-2	Average	Specification
SSD Mass (g)	937.53	948.13	-	-
OD Mass (g)	890.78	904.7		
Vacuumed Mass (g)	952.83	963.11		
Immersed Mass (g)	556.3	575.2		
ρ (Ω.m)	207.5	208.5	208.0	
Fapp			1,638	
Snick (%)			0.081	
S ₂ (%)			0.035	
S (%) 30 years			33.28	≤ 85%
S (%) 50 years			40.60	≤ 85%

Notes:

1. All test specimens were fabricated at AET on July 31, 2023.

2. The test results represent the specimens tested and the methods specified.

3. 6 was considered 1.3. for deicing exposure.

4. 30 and 50 years of service life were considered.

Degree of Saturation

NESMEA 100th Annual Meeting

Construction Methods

MassDOT Cement Concrete Pavement Project

Phasing

- Engineer's construction consisted of 3 phases to consider adjacent properties and access during construction.
- Contractor reduced construction to 2 phases to save on schedule and the upcoming school year.

Site Preparation

Free edge and joint reinforcement [Longitudinal and transverse]

Isolation joints for proposed CBCI setup for separate pour

Tie/Dowel Bar Configuration

- Design to provide #6 dowel bar splicers 24" long, 36" o.c.
- To support phasing, construction joint changed to ³/₄"dia. X 24" epoxy deformed tie bar set at mid slab

Protection From Adverse Conditions

- Hot, evaporative, high solar radiation conditions present throughout most of the placements
- Incorporate ice into the mix during batching at the plant
- Evaporation Rate > Bleed Water Rate: Apply liquid evaporation reducers to combat high evaporation rate during finishing
- Apply white pigmented liquid membrane-forming compound for curing and sealing (ASTM C1315) immediately after texturing
- Apply white polyethylene film for curing immediately after final set

Protection From Adverse Conditions

NESMEA 100th Annual Meeting

Mixing and Delivery

NESMEA 100th Annual Meeting

Handling and Placing

NESMEA 100th Annual Meeting

Finishing

Finishing

Finishing

Curing

NESMEA 100th Annual Meeting

Curing

NESMEA 100th Annual Meeting

Hard Saw Cut Contraction Jointing

Hard Saw Cut Contraction Jointing

NESMEA 100th Annual Meeting

Testing During Construction

<image>

NESMEA 100th Annual Meeting

Final Walkthrough

Lessons Learned and Future Considerations

MassDOT Cement Concrete Pavement Project

Moving Forward

□Next up: Holyoke, MA (District 2) U.S. Route 20 (Fall 2025)!

Concrete pavement mix design can be further optimized Increase aggregate content, decrease paste content

Polypropylene fibers to increase flexural strength and decrease slab depth

Alternative low carbon cementitious materials

Performance based pozzolanic cement, recycled ground glass pozzolan, natural pozzolans, and more

Innovative chemical admixtures

□ Colloidal silica admixtures to enhance cohesion, finishing, and curing □ Permeability reducing admixtures (PRA)

Type I / II vs. Type IL Cement

□ Test results showed increased permeability during production with Type IL □Specify 2000 psi for traffic opening instead of 70% of f'_C

siderations <u>-earned and</u> essons Future

Questions and Discussion

180 PHOENIX AVENUE · LOWELL, MASSACHUSETTS 01852 · TEL (978) 458-1223 · FAX (978) 441-2434

gcp applied technologies[®]

40/1813055V

