Balanced Mix Design

Balanced Mix Design: Why should I care?

Do all your mixtures last as long as you design them for?

Do all your mixtures in a given category perform equally?

Do you have confidence that Superpave can handle all the different mixture and materials you use?

What has changed?

The advent and popularization of <u>mechanical</u> <u>tests</u> for the <u>asphalt</u> <u>mixture</u> related to common distresses.

BMD

- Variability in production still largely an unknown.
- Impact of aging on cracking tests.

BMD

 Selection of test temperature is critical
 – especially for rutting tests.

US. Department of Transportation Federal Highway Administration

Macrotexture for Safety

U.S. Fatalities

 Roadway departure crashes overrepresented in annual fatalities

Technical Advisory on Surface Texture

Surface Texture for Asphalt and Concrete Pavements T-5040.36

Issued June 17, 2005

- Technical Advisory
 - (1) issues information on state-of-the-practice for providing surface texture/friction on pavements and
 - (2) issues guidance for selecting techniques that will provide adequate wet pavement friction
- Not aware of any State DOT with dense graded asphalt mix specification requirements for macrotexture

Asphalt Pavement Macrotexture

- Significant focus on adding life (durability) to dense-graded mixes over the past several years
 - Concern that macrotexture may be compromised
- Macrotexture mix surface voids, driven by aggregate gradation
 - Provides voids/channel to evacuate water more critical at higher speeds
 - Provides friction from hysteresis hysteresis increases with speed – more critical at higher speeds
 - FHWA is investigating macrotexture testing procedures that could be used in mix design, mix verification, and field verification

Sand Patch Method

int of Transport Federal Highway Administration

Circular Texture Meter (CTM)

- > Changes in Pavement Macrotexture
- Have Been Used to Identify Segregation, Skid Resistance, Pavement Noise
- CTM Laser-Based Device to Measure Mean Profile Depth (MPD) of a Pavement
- Displacement Sensor mounted on an Arm Rotates Clockwise at a Fixed Elevation from Surface to Measure Vertical Macrotexture Depth
- Does Not Account for Concave Recesses in the Pavement Surface
- Correlates Well with Sand Patch Test

Laser Texture Scanner (LTS) in Lab or Field

- Lightweight, portable, rapid, 3D scanner
- Utilizes a 100-mm laser line and travels 100 mm to collect a square area
- Measures macrotexture on freshly compacted mats in field and on cores or gyratory specimens in lab

Typical Gyratory Scanned Surface

File Vi

Salect Filesa) Salect Filesa									
Heater	Benafts			- 2	[Create KML			
	MPD	875	89/5	10	180	8.8	Rits	Length	14
D Alles	0.468		-0421	3465					
		6466	0.309	0 155	5476	0.9640		125,454	
	C MIR	10410	6.300	19.362				185,276	
-	0.334	6.66	- 300	-9.1M	6.477	C-W.M	12 12 12 12	101.00	
-	0,374	0.00	- 300	-5-40	1000	0.7580	11000		
	4 mil	0.000		1	114	C-C-C-C		104 101	
-	0.00	10000		1		1.44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110,000	
		-	1000	1		the second	a segur	100,000	
			1.000	1		- ALALAN	-	1244472	
-		1		100	1		-	TRA ST.	
		0.000				-	-	COLUMN TWO IS NOT	
	CO.	10403	-	1 and		-	-	114	
	0.000	10.000		The second		Taxa and		101.000	
1	0.111	CALL .	6.273	Same .	-	and the	Laner	TRANCT	
	0.375	6411	0.000	laan	-	D-D4 10	-	1111.11	
-	C.3HP	0405	0201	Three	10.005	100140	-outure	THURSDAY	
		0.417		Tint	-		-0.1400	19440	
	0.322	0.458	0.060	0.172	0.61	3.0300	-03030	100.376	
		0.457	5204		6.462	04190			
- 20	0.316	6494			10.461		-0.3000	196.036	
21	0,000	645	0.064	101/1	-	0.040	10.2020	115.500	
1									
				Gran	h Hein				
Dags	10060 0	pan In	on with a	NAME OF	wer. pre	helivita)	pohite o	F +1 80y5.	
T = 80 E + Det C = Cel N = Mo	Visa fi set the property were assessed	 Boto Verage to de on moxico tenon poli 	ne F + Fr fault stat tocation Hts	oet Vice trig pool	lan .	10.410		10052	

US.Department of Transportation Federal Highway Administration

Challenges

- Reflectance resulting in data outliers.
 - Dulling spray used.
- Edge effects when using smaller specimens or misaligned cores.
- Current work on AASHTO method and interlab study.

Mean Profile Depth

Different sample measurements

Tools for QC of Mix Placement

Tools for QC of Mix Placement

- MATC currently deploying two tools ready now for effective quality control of mix placement:
 - Dielectric Profiling System (DPS)
 - Paver-Mounted
 Thermal
 Profiler (PMTP)

Paver-Mounted Thermal Profiler (PMTP)

Imaging of Mat Surface: 2 to 3 meters behind screed

All images source: Travis Walbeck

48

Dielectric Profiling System (DPS)

- Coring and nuclear density gauge only used for spot checks on predetermined and random locations
- DPS provides continuous density profile along testing path

PMTP Thermal Map: Example 1

Example 1: Paver-Mounted Thermal Profiler (PMTP)

Example 2 – Day 1: PMTP

MAATC US. Depart

US.Department of Transportation Federal Highway Administration

Example 2 – Day 2: Data from PMTP

Date: 6 - 29 - 21

Example 3: Paver-Mounted Thermal Profiler

Example 4: Paver-Mounted Thermal Profiler

An ideal match? Paver-Mounted Thermal Profiler (PMTP) + Dielectric Profiling System (DPS)

Example 3: DPS and PMTP – as viewed in VETA

Final Thoughts

Technology Transfer

MATC

Federal Highway Administration ۵ 58.338 followers 1w . 0

We work with all stakeholders in the asphalt pavement community! The FHWA Mobile Asphalt Technology Center (MATC) has resumed its onsite training to accompany its equipment loan program and recently supported Virginia ...see more

Be the first to comment on this

HWA-HIJ-21-3000 Background Highway agencies seeking a more viable way to check the quality of asphalt construction than through sample cores are considering dielectric profiling systems (DPS) as a solution. DPS use a ground-penetrating radar (GPR) to collect dielectric values from the underlying surface that c) use grows provide or possible read (Core) is recorder to intercers, where it reads use any, a DPS and it related to an intercert of the read of ng-term per tate Departments of Transportation (DOTs) have been field-testing DPS units in their pavement te rograms through the second Strategic Highway Research Program (SHRP1) Initiative (R06C), which dvanced the DPS technology as a nondestructive method for checking asphalt density. DOTs describe initial difficulties in interpreting the intricate data and managing the enormous data output. However, DOTs observe that the data produces a more uniform and immediate picture of a pavement layer than the process of delaxings gample cores at random spots abong a new section. How DPS Work

Spotlight on Pavement Density

Use of Dielectric Profiling Systems for Asphalt Density

DPS units come in various models from multiple commercial vendors, costing about \$70,000 per unit. Also known as density profiling systems, they ften are in the form of lightweight carts that one person easily pushes along a test math. A three-channel GPR macrited near the wheels over nomb ts data that transmits to the unit's computer system

The unit determines the dielectric readings of the materials that make up th asphali layer by measuring the velocity of reflected waves to about 2.5 index All material has a delectric constants, ranging from 16 nat it o.81 for water. HMA delectric constants typically range from 3 to 6, depending on the aggregate type, aphalo context, and percentage of air works.

The paving crew can view the data intracediately on the unit's trackpad and then export the data to other software for further analysis. The delectric constants along the test path display as statistical data, histograms, box plot with outliers identified, or heat maps of the production lot. Considering DPS? Technical assistance is available from the Federa Highway Administration (FHWA) through the Mobile Asphalt Techn ter (MATC) or FHWA division offices. There is also a national pooled nd study on DPS us

- Ability to detect and identify areas of concern. Contracting crews can adjust or remediate while the
- work known in instart and before a job's acceptance. More uniform results than with sample cores, which may more variations in the new mat. Significant reduction of cores per project. This avoids risks of new defects from removal and return of
- ores. It also can save on contract costs.
- tores in ano can be resolved to control costs. Data applies to other uses, such as immaking changes to construction specifications, mapping locations and data, and other quick visualizations. More efficient and such than correct, a DPS unit can be walked behind the paving equipment without additional road closures against fast-moving traffic.

Join **social media** (LinkedIn, Facebook) to follow FHWA MATC efforts

I-pagers on Asphalt Construction:

- Enhancing in-place density
- Spotlight on Pavement Density: **Dielectric Profiling System Series**
- Spotlight on Constructability: Paver-Mounted Thermal Profiler Series
- Spotlight on Pavement Safety

Technical Documents - Mobile Asphalt Technology Center - Asphalt - Pavement & Materials - Pavements - Federal Highway Administration (dot.gov)

US.Department of Transportation Federal Highway Administration

...

1-pagers & "Technician's Tips and Tricks" Videos

60

US Department of Transportation Federal Highway Administration

FHWA InfoMaterials: MATC Data from Past Site Visits

F ^{HWA} InfoMaterials	Hom	e Data E					
HOME DATA LIBRARY							
Find Datasets	Data	WA(1)	MT	10(1)		ME	6
Test Method Material Type	Based on the filter criteria applied in Find Datasets (if any), there are 11 of 11 datasets available Dataset: Mobile Asphalt Technology Center (MATC) Dataset	^{of} Rhode Islan	^{3⁶} Rhode Island (1)				
Program/Study State/Country			Mobile Asphalt Technology Center (MATC)				
Find Samples ?	Mobile Asphalt Technology Center (MATC) Dataset	ти	T CO(1)	IL(2)	IN WV(1)	14	RI(1)
Project	There are 31 of 31 Samples currently selected.	2)		KS(2) MO	KY VA(4)	11	ст
State Year	Data Map References	AZ(1)	NM(1)	OK AR(1)	TN(1) SC(1)	1/1-	NJ
	Classification 📼 Table			MS	AL(2) GA(1)	\square	DE(1)
				TX LA(I)		-	MD(1)
		AK(1)			FL(3)	4	DC(1)
	Project and Sample Information Asphalt Mix Design Design Test Results		crite	PR	VI-ST-		

https://infomaterials.fhwa.dot.gov/Dataset/DatasetDetails

MATC Website

https://www.fhwa.dot.gov/matc

