

A Vision for Net Zero Carbon Emissions for the Asphalt Pavement Industry

Embodied Carbon Infrastructure: Policy Drivers and State of the Practice for Asphalt Mixture EPDs

Richard Willis, Ph.D. NAPA <u>rwillis@asphaltpavement.org</u>

Our mission:

To advance the asphalt pavement industry through leadership, stewardship, and member engagement.

Our vision:

Sustainable transportation infrastructure that paves the way for thriving communities and commerce.

A Look Back

What is an EPD?

- Environmental Product Declaration
 - Quantified environmental information
 on the life cycle of a product
 to enable comparisons between products
 fulfilling the same function*
- "Nutrition label" for environmental impacts
- Independently verified

EPD "Nutrition" Label

Your Building Product

LCA IMACT MEASURES	TOTAL
Primary Energy (MJ)	12.4
Global Warming Potential (kg CO ² eq)	0.96
Ozone Depletion (kg CFC·11 eq)	1.80E-08
Acidification Potential (mol H* eq)	0.93
Eutrophication Potential (kg N ⁻ eq)	6.43E-04
Photo-Oxidant Creation Potential (kg 03 eq)	0.121

https://westcoastclimateforum.com/cfpt/concrete/strategy1

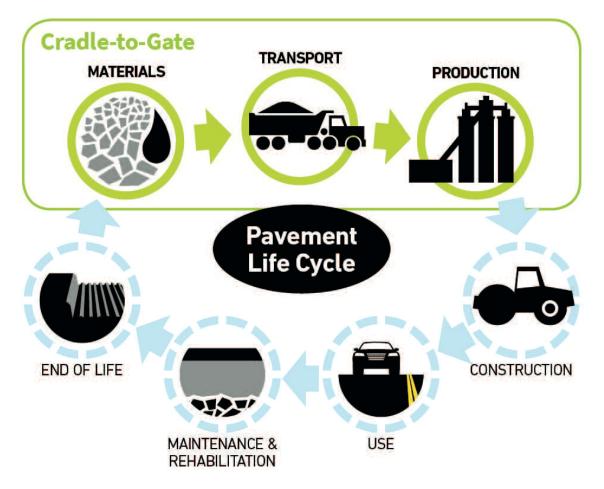
*Source: ISO 14025:2006. EPDs from different Product Categories should NOT be compared to each other.

Types of EPDs

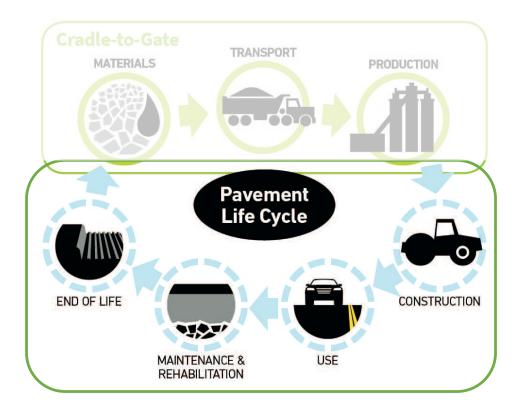
Industry-Wide

ENVIRONMENTAL PRODUCT DECLARATION

Product-Specific


Plant-Specific & Product-Specific

EPDs for Asphalt Mixtures are Plant-Specific & Product-Specific


Most EPDs for construction materials have a Cradle-to-Gate scope

- Materials
 - Aggregates
 - Asphalt Binder
 - Additives
- Transport
 - Truck
 - Barge
 - Rail
- Production
 - Burner Fuel
 - Electricity
 - Equipment
 - Water

What about the other life cycle stages?

- Outside the scope of the Asphalt EPD
 - As defined in the Product Category Rules (PCR)
- Mix producers have little control beyond the gate of the plant
 - Owners can evaluate these stages through their own Life Cycle Assessment (LCA)

Key Components of NAPA's EPD Program **Product Category Rules General Program EPD Software Underlying Life Cycle** Instructions (PCR) Assessment 0 Update to the Life Cycle Assessment for Asphalt -> C # asphaltepd.org * Mixtures in Support of the Emerald Eco Label TR8 Federal - E Rei Environmental Product Declaration Program 6 April 2022 2. Production Fa **General Program Instructions for** Emerald Eco-Label Environmental Product Declarations (EPD) Program **Product Category Rules (PCR)** National Asphalt Pavement Association For Asphalt Mixtures Amlan Mukheriee, PhD, PE Professor Version 2 trisight Department of Civil, Environmental & Geospatial June 9, 2020 Welcome to the Emerald Eco-Label EPD Tool Engineering Michigan Technological University Houghton, MI 49931 Version 2.0 -mei **Michigan Tech** Effective Date: April 2022 Validity Period: Through March 2027 For ECOZLABEL National Asphalt Pavement Association 6406 Ivy Lane, Suite 350 6406 Ivy Lane, Suite 350 | Greenbelt, MD 20770 | 301-731-4748 6406 Ivy Lane, Suite 350 | Greenbelt, MD 20770 | 301-731-4748 www.AsphaltPavement.org/EPD Greenbelt, MD 20770-1441

Emerald Eco-Label Software

- NAPA's web-based software tool
- Asphalt mix producers use it to develop verified EPDs
- EPDs are plant-specific & mixspecific
- Can be used for asphalt plants located in the U.S.
- Simplified process that saves mix producers time and money

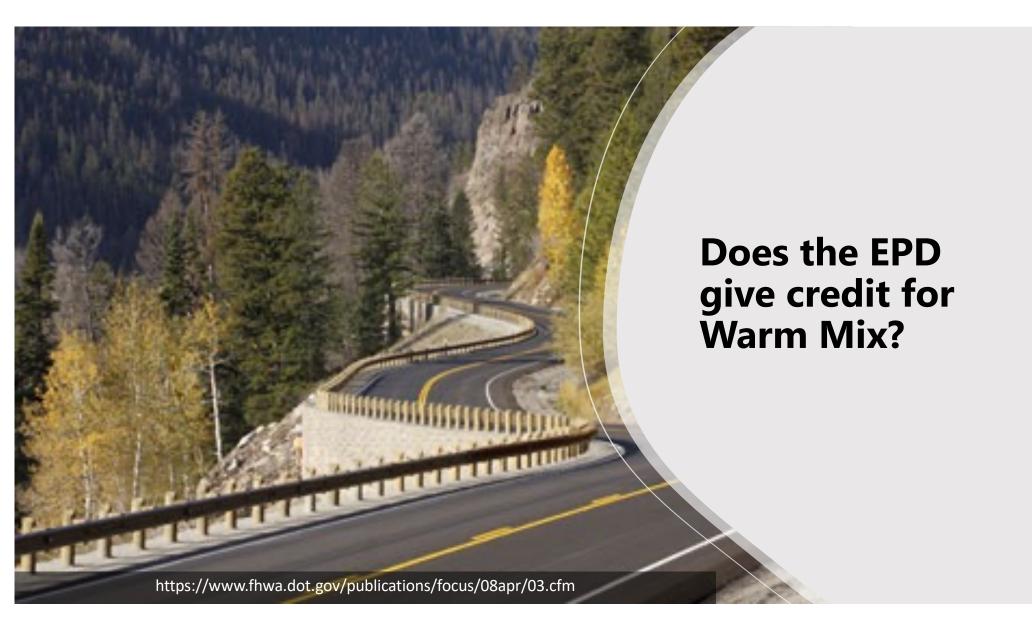
EPD Optimizer Tool

- Easily compare two of your own mixes to each other
- More granular analysis of data
- Create plant variants to see how changes to plant operations affect EPDs
- Evaluate economic and environmental impacts of certain changes
 - Switching fuel types
 - Aggregate moisture reduction

Can EPDs for Asphalt Mixtures be Compared to Each Other?

EPDs for different asphalt mixtures are comparable if:

• They perform a similar function and have similar performance characteristics


Examples of mixes that should not be compared to each other:

- Porous vs. dense-graded
- Binder mix vs. surface mix

Beware of data gaps!

- What are the biggest contributors to GHG emissions?
 - Burner fuel consumption
 - Asphalt binder content
 - Sometimes, aggregate hauling exceeds everything else

My Chats	Public Chats		Users	Documents	Chats
----------	--------------	--	-------	-----------	-------

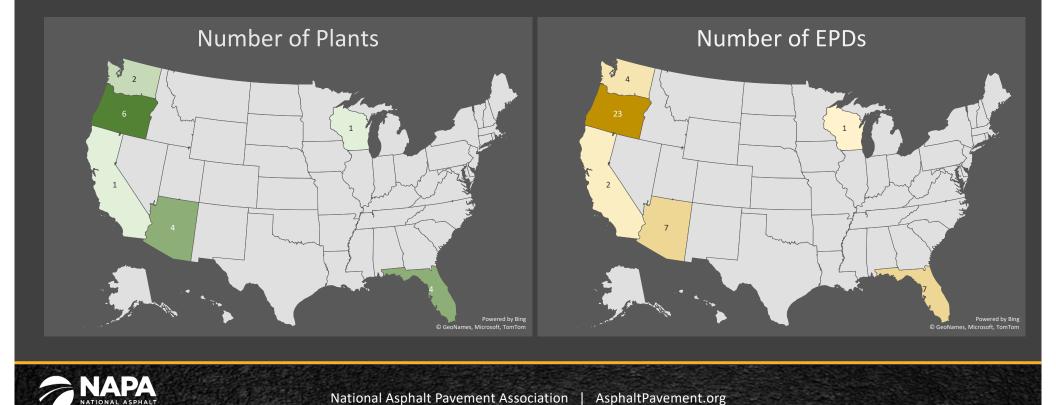
Logout

Hey NAPA!

What should I know about environmental product declarations? Environmental Product Declarations (EPDs) are standardized documents that provide quantified environmental data for a product, based on information from a life cycle assessment (LCA). Here are some key points about EPDs, especially in the context of asphalt pavement:

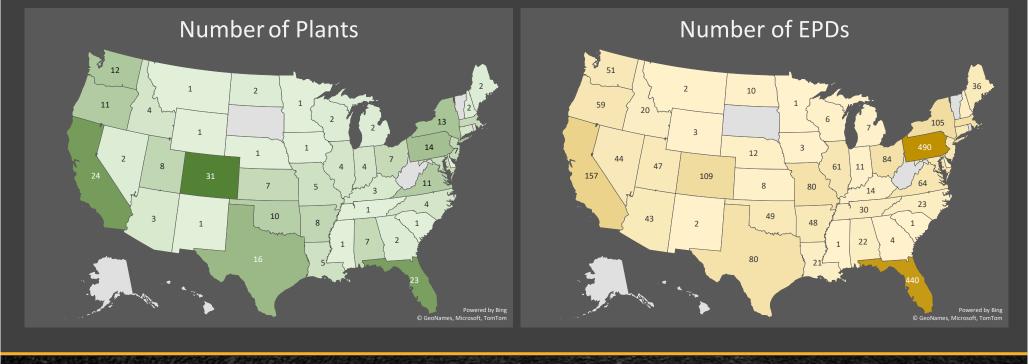
- Defining EPDs: An EPD is a Type III environmental declaration as detailed in ISO Standard 14025:2006. It communicates the environmental impacts of a product or service, quantifying aspects such as energy consumption, material use, and waste production over the product's life cycle stages.
- 2. **Purpose of EPDs**: EPDs aim to provide transparent, comparable, and

New chat


Ask a follow-up question.

Ð

© XBE. All rights reserved. Use 'Hey NAPA' at your own risk; no warranties given. Use constitutes acceptance of terms.


Published EPDs in March 2022

• 18 plants with 44 EPDs across 6 states

Published EPDs in May 2024

• 284 plants with 2,599 EPDs across 44 states + DC

NAPA's Approach to Benchmarking

GSA – Lower Embodied Carbon Materials

- Low Embodied Carbon Construction Materials – 157 Projects
- Emphasize use of product and facility specific EPDs
- Inclusion of Energy Star metrics

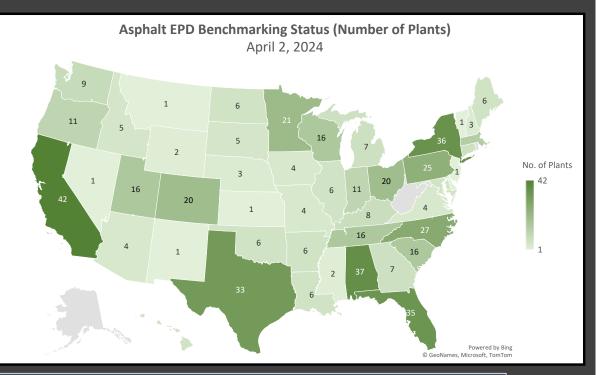
GSA IRA Limits for Low Embodied Carbon Asphalt - May 16, 2023 (EPD-Reported GWPs, in kilograms of carbon dioxide equivalent per metric ton - kgCO ₂ e/ t)					
Top 20% Limit	Top 40% Limit	Better Than Average Limit			
55.4	64.8	72.6			

FHWA Benchmarking Approach

- Industry is empowered to establish its own benchmarks
- Agencies implement industry benchmarking approach
 - Paid for by FHWA grants

Prepared for NAPA by WAP Sustainability Lianna Miller, Benjamin Ciavola, Amlan Mukherjee

February 9, 2024

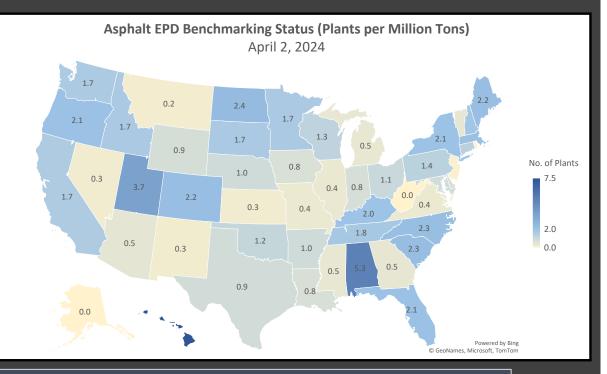

Authors: Lianna Miller, Benjamin Ciavola, Amian Mukherjee

NAPA

National Asphalt Pavement Association | AsphaltPavement.org

NAPA EPD Benchmarking Initiative

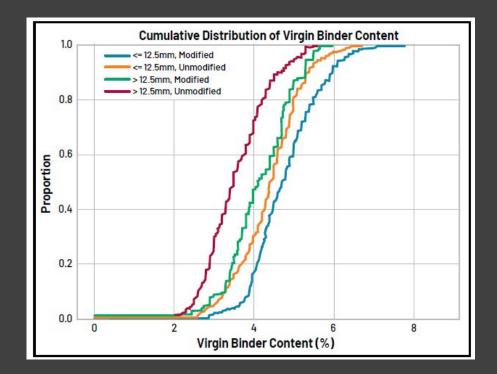
- No cost to participate
- Will enable agencies to develop reasonable estimates for industry averages based on:
 - local conditions
 - key parameters in their specifications
- 525 plants participated



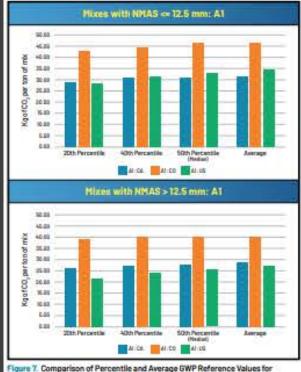
Benchmarking data collection closed on April 1

NAPA EPD Benchmarking Initiative

- No cost to participate
- Will enable agencies to develop reasonable estimates for industry averages based on:
 - local conditions
 - key parameters in their specifications
- 525 plants participated

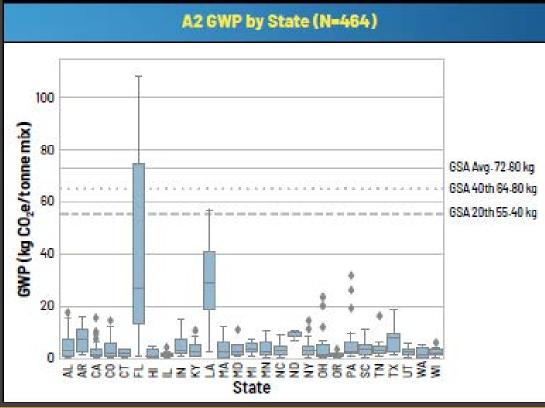


Benchmarking data collection closed on April 1


AI - Materials

- Used currently published EPDs to get ranges of material types
- Types of mixtures
 - NMAS
 - Binder modification

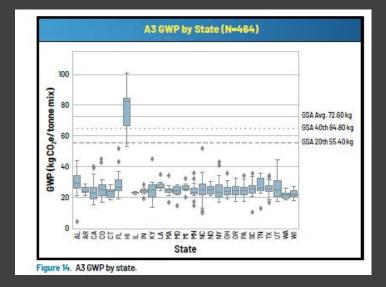
Location/Specifications Matter



California and Colorado, for (i) NMAS <= 12.5 mm and (ii) NMAS > 12.5 mm.

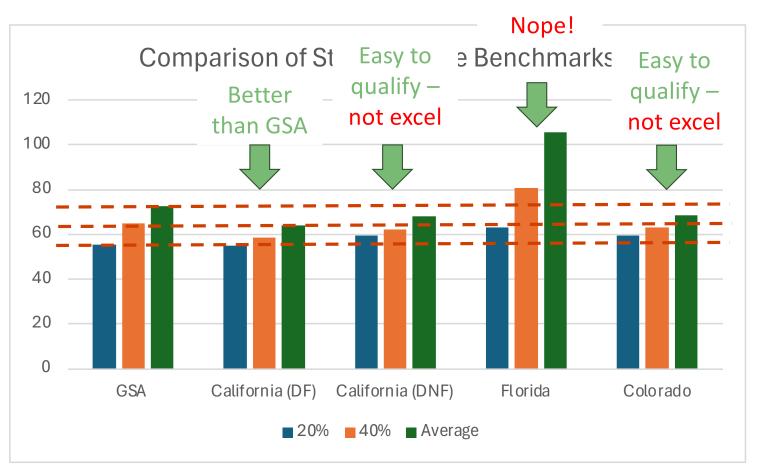
National Asphalt Pavement Association | AsphaltPavement.org

A2: Transportation



National Asphalt Pavement Association | AsphaltPavement.org

A3: Production



National Asphalt Pavement Association | AsphaltPavement.org

Benchmarking Methodology Submitted to FHWA Conformant to ISO 21678

Things To Consider

- Local is best
- Specifications matter
- Don't rush the process
- We are still learning and updating the science
- Are benchmarks the best way to move forward?

EPA Grant

- Management & Reporting
- Robust and Widely Available EPDs for Asphalt Mixtures
 - Mid-cycle and 5-Year Update
 - Rebate program
- Enable Analysis of Whole Life Cycle for Flexible Pavements
 - Data development for modules currently unavailable
- Workforce Development

Centers of Excellence Grant

What is the Simulator?

- Launching point for research, innovation, and policy analysis
- Expand knowledge and understanding
- Consistent results with EPDs for Asphalt Mixtures
- Accessible cost structure

mulator - Joseph Sh	acat					Logo
Aixes	Results: Test Mix			Opti	mizer Download (
Mix Design Test Mix produced by	/ Typical Asphalt Plant	,				
Details Specification: NA Production Type: HN Design method: Nor Electricity Region: PJ			A	ngredients ggregate: Natural inder: Unmodified		
	Acidifica	tion	Global War	ming Ozone I	Depletion Smog	_
	A1 Total	A2 Total	A3 To	tal	A1-A3 Total per metric ton (per short ton)	n:
	26.9 (24.4) kg CO2 eq.		8.2 (7.4) kg CO2 eq. kg CO2 eq.		57.9 (52.5) kg CO2 eq.	
Detailed Result	Note: Where ap	propriate, A1 results are scaled to acc	ount for data gaps. Ing	edents with data gaps an	indicated with the dagger icon (*).	per metric ton (per short ton)
	A1		A2		A3	
					Oil heater: Natural Gas 0.035 mcf	2.5 (2.3) kg CO2 eq.
Natural Stone 0.760 sh tn	1.5 (1.3) kg CO2 eq.				Burner: Natural Gas 0.232 mcf	17.0 (15.5) kg CO2 eq.
Unmodified 0.040 sh tn	25.3 (22.9) kg CO2 eq.	61 200	Truck - Natural Stone 51.300 shtn*mi		Equipment: Diesel 0.087 gal (US ft)	1.2 (1.1) kg CO2 eq.
	0.2 (0.1) kg CO2 eq.		Truck - Unmodified 2.700 shtm*mi		PJM Interconnection, LLC 0.003 MWh	2.0 (1.8) kg CO2 eq.
RAP 0.200 sh th			Total			22.8

Final Thoughts

- How is Quality Assurance completed?
- Data confidentiality is important
- Must be thinking years ahead
- Changes cost \$\$\$
- Can't do 50 one-off's

Asphaltepd.org

